LASER-SCANNING CONFOCAL MICROSCOPY DISTINGUISHING PERI-MORTEM & POST-MORTEM DAMAGE USING HISTOTAPHONOMIC & HISTOCHEMICAL TECHNIQUES

Ashley C. Smith, M.Sc.

Department of Anthropology

Presented at the 69th annual meeting of the American Academy of Forensic Sciences in New Orleans, LA, 18 February 2017

PURPOSE

- Usefulness of Laser Scanning Confocal Microscopy (LSCM)
- Differentiate perimortem from postmortem damage
- Histotaphonomic & histochemical
 - Microstructural
 - Protein degradation
 - Osteoclast degradation

Basic fuchsin stained ilia cortex 40x mag., 488nm Argon laser

SIGNIFICANCE

- Better Reconstruction of death event
 - injuries associated with death
 - damage occurring PM
 - concealing body
 - dismemberment
- Legal Implications
- Determine PMI

PERI- VS POST-MORTEM BREAKAGE

- Gross Taphonomic Differences
 - Organic Component
 - Moisture Content
- Break Morphology
- Fresh
 - Gross Appearance
 - Jagged, Uneven, Spiralled
 - Microscopic
 - Smooth
- Dry
 - Gross Appearance
 - Straight, Perpendicular to shaft
 - Microscopic
 - splintered

Perimortem trauma of human femur vs postmortem damage of human tibia

LASER SCANNING CONFOCAL MICROSCOPY

- Combines principles of scanning electron, white light, and epifluorescence microscopy
- Different laser wavelengths
 - Fluoresce dyes and stain
- Photonmultiplier Detector
 - Converts light intensity into image
- Generates 3D Image
- Protein/Cell Isolation
- Quantified Microscopy

Laser Scanning Confocal Microscope at the University of Toronto Mississauga

METHODOLOGY

- 12 pieces pig bone
 - 6 "Fresh" <48hrs.
 - 6 Dry 5 years
 - 6 Pre-stained with basic fuchsin
- Methyl Methacrylate
- Sectioned to 10µm
- Alexafluor 488 + SlowFade Gold, TRAP 87, H&E
- LSM 510 Meta LSCM
- DAPI-GFP 4 Ch. Multitrack
- 405nm, 488nm, 543nm, 633nm

Screenshot of Zen 2009© LSCM Imaging Set-Up

DATA ANALYSIS

- Qualitative
 - 3D Imaging of edge
 - Microstructure
- Quantitative
 - Protein/Cell Count
 - Mean Hue/Std Dev.
 - RGB Count
- Statistics
 - One-way ANOVA
 - Pearson r² Correlation
 - Mean Measure and PMI

perimortem sample, basic fuchsin stain w/Slowfade Gold dye, 40x Mag

5	
rSD: 5.62	rMode: 29
gSD: 9.47	gMode: 13
bSD: 8.21	bMode: 9
	5 rSD: 5.62 gSD: 9.47 bSD: 8.21

255

MICROSTRUCTURAL EDGE RESULTS 40 X MAGNIFICATION

Perimortem jagged break edge

Postmortem smooth break edge

QUALITATIVE MICROSTRUCTURAL RESULTS

- Perimortem
 - Contiuous
 - Smooth
 - Natural pitting
- Postmortem
 - "Dissolved"
 - Liquid-appearance
 - Acidic etching

QUALITATIVE HISTOCHEMCIAL RESULTS

- Differences with laser wavelengths
 - 405nm Proteins/Cells
 - 633nm Collagen
 - 488nm Mineral Content
- Protein and Collagen
 - Perimortem
 - Higher hue counts
 - Presence of proteins
 - More collagen present
 - Higher mineral intensity
 - Postmortem
 - Lower hue count
 - No proteins present
 - Less Collagen

Greyscale image of proteins in cortical bone, taken with 405nm Diode laser (blue channel).

STATISTICAL RESULTS

- Perimortem
 - Significantly higher protein count
 - *p*=0.000
 - *r*²=0.962
 - Tighter hue-value ranges
 - Lower hue-value means, std. dev., modes
 - Higher pixel count at mode
- Postmortem
 - No protein/cells registered
 - Wider hue-value ranges
 - Higher hue-value means, std. dev., modes
 - Lower pixel count at mode
- Blue channel (405nm)
 - Significant difference between peri- & postmortem
 - *p*=0.004
 - Significant correlation
 - Hue-value mean $r^2=0.564$
 - Hue-value mode r^2 =0.609
 - Due to presence of proteins

Greyscale image of cells in cortical bone taken with a 633nm HeNe 2 laser (orange channel)

DISCUSSION & CONCLUSION

- Issues raised
 - H&E bleaches with natural autofluorescence
 - Undecalcified samples
 - Basic fuchsin
- Perimortem
 - Jagged edge
 - Higher protein/cell counts
 - Collagen/mineral fluorescence
 more intense
- Postmortem
 - Smooth edge
 - No protein/cells
 - Wider hue-value ranges
 - Collagen/mineral fluorescence weaker in intensity

Image of human trabecular bone proteins taken with a 543 nm HeNe 1 laser

ACKNOWLEDGMENTS

- Lelia Watamaniuk, M.Sc.
 PhD Candidate
 Department of Anthropology
 McMaster University
- Agata Gapinska-Serwin
 Laboratory Technician
 Forensic Science Program
 University of Toronto Mississauga
- Prof. Tracy Rogers, Ph.D. Department of Anthropology University of Toronto – Mississauga
- Laboratory of Bone Histomorphometry, Centre Hospitalier de l'Université de Montréal

- Department of Biology, University of Toronto - Mississauga
- Department of Chemical & Physical Sciences, University of Toronto -Mississauga

Project Partially Funded By:

- Department of Anthropology, University of Toronto - Mississauga
- Forensic Sciences Program, University of Toronto - Mississauga